
Pattern Recognition Letters 25 (2004) 725–731

www.elsevier.com/locate/patrec
A vector quantization method for nearest neighbor
classifier design

Chen-Wen Yen a,*, Chieh-Neng Young a, Mark L. Nagurka b

a Department of Mechanical Engineering, National Sun-Yat Sen University, Kaohsiung 80024, Taiwan
b Department of Mechanical and Industrial Engineering, Marquette University, Milwaukee, WI 53201-1881, USA

Received 5 September 2002; received in revised form 11 December 2003
Abstract

This paper proposes a nearest neighbor classifier design method based on vector quantization (VQ). By investigating

the error distribution pattern of the training set, the VQ technique is applied to generate prototypes incrementally until

the desired classification result is reached. Experimental results demonstrate the effectiveness of the method.
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1. Introduction

As one of the simplest methods for nonpara-

metric classification, the nearest neighbor (NN)

classification rule has been applied extensively in

many problems. Typically, a large number of

prototypes are desirable for the conventional NN

classifiers to acquire statistical information. The

resulting computational demands often hinder the

on-line application of NN classifiers. As a conse-
quence, many methods have been proposed to

reduce the size of the prototypes without signifi-

cantly compromising the classification accuracy.
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Many of these prototype-editing approaches (e.g.,

Hart, 1968; Gates, 1972; Chidananda Gowda and
Krishna, 1979; Devijver and Kittler, 1980) adopt

an iterative process to move training samples in

and out of the prototype set and retain a subset of

the training samples as the final prototype set. A

drawback of this technique is that the classification

error must be recomputed every time a sample is

moved in or out of the prototype set. Conse-

quently, these methods may be computationally
demanding in solving problems with a large

number of training samples.

Xie et al. (1993) present a different approach for

NN classifier design. Rather than inspect the

necessity of each training sample, they examine the

training samples as a group of data. Following this

idea, Linde et al. (1980) and Gray (1984) construct

an optimal vector quantizer for each class of the
training data. The resulting codewords (the points
ed.
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that are used to represent the training samples) are

then chosen as the prototypes of the NN classifier.

Experimental results demonstrate that their ap-

proach outperforms several previously proposed

NN classifier design methods. However, since the

codewords are computed independently for each
class of the training data, this method does not

consider the interaction among different classes of

samples. Another drawback is that when expan-

sion of the prototype set is required for a better

classification result, the number of prototypes

must be increased by a factor of two. As a result,

it is often difficult to use this method to design

an NN classifier that has an optimal number of
prototypes.

This paper is based on the vector quantization

(VQ) technique, and introduces an NN classifier

design method that expands the prototype set on a

one-at-a-time basis. During this progressive pro-

totype generation process, attention is focused on

the interaction between the codewords associated

with different classes, with new codewords placed
at the region that has the largest classification

error. In the following section, the basic idea of the

VQ technique is illustrated.
2. Preliminaries

2.1. The NN classifier

The classification problem considered consists

of a finite set of training samples X ¼ fx1;
x2; . . . ; xIg with every sample xi ¼ fxi1; xi2; . . . ; xirg
being an r-dimensional vector where r is the

number of feature variables and I is the number of

the training samples. For every sample xi, its real

class Ci 2 C is known, where C ¼ fC1;C2; . . . ;
CMg represents a set of M classes. Based on the

information provided by X , class CM is represented

by a set of NM prototypes. To determine the class

of a tested sample, the NN classifier finds the

closest prototype neighbor. The class of this

nearest prototype is then chosen as the class of the

tested sample. Therefore, the key to the NN clas-

sifier design process is finding appropriate proto-
types by using information contained in training

set X .
2.2. VQ and the VQ-NN classifier

In similarity to scalar quantization where a

large set of numbers is mapped to a smaller one,

the VQ method quantizes groups of numbers to-
gether rather than addressing them one at a time.

In data compression problems, groups of numbers

are input vectors and quantization levels are

codeword (or reproduction) vectors. In particular,

given a set X ¼ fx1; x2; . . . ; xIg of input vectors,

with M < I , a set W ¼ fw1;w2; . . . ;wMg is chosen

in VQ to quantize X . To transmit any input vector

xi over communication channels, the sender
determines the nearest codeword vector wj

according to some distance measure dðxi;wjÞ and

transmits the index j of this vector. The distance

measure used in this paper is the Euclidean dis-

tance:

dða; bÞ ¼
Xn

i¼1

ðai � biÞ2 ð1Þ

for a; b 2 Rn.

Based on this technique, Xie et al. (1993) pro-

posed the VQ-NN classifier. By treating training

samples as input vectors, training samples in each

class are quantized independently by the Linde-

Buzo-Gray (LBG) method (Linde et al., 1980).

The resulting codewords are then chosen as the

prototypes for the VQ-NN classifier. Drawbacks
of this design method are: (i) it does not consider

interaction among classes, and (ii) it is inflexible in

determining the number of prototypes. These two

issues are addressed in the following section.
3. Proposed method

3.1. Problems to be solved

In developing an incremental prototype set

building method, three problems need to be

solved. The first problem is how to generate an

initial prototype set. The second problem is how to

increase the number of prototypes one-at-a-time

for better classification results. The last problem is
when to stop the prototype set building process.

To resolve the first problem, the proposed ap-

proach, based on the concept of VQ, generates a
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single prototype independently for each class.

Specifically, the initial prototype is chosen as the

centroid of the training samples associated with

each class.

To resolve the second problem, the classifica-

tion error associated with an NN classifier is
investigated. Consider the following Bayes deci-

sion rule which assigns training sample x to class

Cb if

pðxjCbÞP ðCbÞP pðxjClÞP ðClÞ for all l 6¼ b ð2Þ

where pðxjCbÞ and P ðCbÞ are the conditional and a
priori probabilities of class Cb, respectively. In this

paper, the class membership b determined by Eq.

(2) is called the Bayes class membership. For the

training set, an edited NN rule can have the same

classification result as the Bayes classifier if the

class-conditional probabilities of its prototype set

satisfy

qðxjCbÞP ðCbÞP qðxjClÞP ðClÞ for all l 6¼ b ð3Þ

for every training sample. Note that this does not

require qðxjCiÞ ¼ pðxjCiÞ for all classes Ci.

Based on the Bayes decision rule, there can be

only two reasons for an NN classifier to misclas-

sify a sample. The first reason is that the actual

class membership of the sample is not the same as
the Bayes class membership determined by Eq. (2).

As a result, such a sample cannot be classified

correctly by the Bayes decision rule. This occurs

when

pðxjCbÞP ðCbÞ > pðxjCaÞP ðCaÞ ð4Þ

with a denoting the actual class membership of
sample x. Forcing such training samples to be

classified correctly violates the Bayes decision rule

and can actually degrade the generalization accu-

racy of the classifier. The second reason for the

misclassification is that the classifier, in its current

form, cannot satisfy Eq. (3). Consequently,

qðxjCrÞP ðCrÞ > qðxjCbÞPðCbÞ for some r 6¼ b:

ð5Þ

For convenience, these two types of errors are re-

ferred to as the Bayes and classifier errors,

respectively, in the remaining part of the paper.
3.2. Procedure for incremental prototype set build-

ing

One of the fundamental requirements for an

acceptable classifier is reduction of the classifier
error to the extent possible. By assuming that a

number of prototypes have already been found for

the classification problem, the proposed approach

uses the following procedure to resolve the prob-

lem of incremental prototype set building.

(1) With wi;j denoting the jth prototype of the ith
class, perform clustering independently for
each class of the training set by assigning every

training sample to the nearest prototype of the

same class.

(2) Compute the number of ith class training sam-

ples whose closest ith class prototype is wi;j.

Denote this number as Ri;j.

(3) Use the NN decision rule to classify the

training set by associating every sample to its
nearest prototype regardless of the class dis-

tinction.

(4) Compute the number of ith class training sam-

ples whose closest prototype is wi;j. Denote this

number as Qi;j.

(5) Denote the difference between Ri;j and Qi;j as

Ei;j, i.e.,

Ei;j ¼ Ri;j � Qi;j ð6Þ
(6) Denote the prototype that has the largest value

of Ei;j as w
� and find the training samples that

were assigned to w� in the clustering process.

These training samples are then divided into

two clusters by using the LBG method.

(7) Increase the number of prototypes by one by

replacing w� with the two newly generated

cluster centers.

The rationale behind this procedure is explained

as follows. To correctly classify a training sample,

this sample and its nearest prototype should be-

long to the same class. In contrast, a nonzero Ei;j

indicates that some of the ith class training sam-

ples that were assigned to wi;j in the clustering

process of step 1 were ‘‘taken away’’ in the clas-
sification process of step 3 by a prototype that has

a different class membership. Apparently, for each
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of these incorrectly classified samples, there exists

at least one r that satisfies the following inequality

qðxjCrÞP ðCrÞ > qðxjCaÞP ðCaÞ: ð7Þ
To correctly classify these samples, a possible

solution is to make the corresponding qðxjCaÞ
larger. As shown by Lofsgaarden and Quesenbery

(1965), with N observations of a random variable

X , the estimate of the probability density function

pðXÞ is inversely proportional to V ðK;N ;XÞ,
which is the smallest hypervolume that encloses all

the points at least as near to X as the Kth nearest
neighbor of X . Hence, step 6 of the procedure

splits the cluster that has the largest Ei;j (and thus

has the largest number of incorrectly classified

training samples among all clusters) into two sub-

clusters. This step can reduce the distances be-

tween these incorrectly classified samples and their

cluster centers and thus reduces the corresponding

V ðK;N ;XÞ. As a result, the corresponding qðxjCaÞ
is made larger and the new cluster centers can re-

cover these samples, which were incorrectly ‘‘taken

away’’ by a prototype that has a different class

membership.

After increasing qðxjCaÞ for the training sam-

ples of the cluster that has the largest Ei;j, the class

membership property of some of the samples may

change from Eq. (7) to

qðxjCaÞP ðCaÞ > qðxjClÞP ðClÞ for all l 6¼ a: ð8Þ

The classification accuracy for the training set can

thus be improved.

A potential problem of this cluster splitting

technique may occur in dealing with any sample

that has different actual and Bayes class member-
ships. For these samples, based on Eq. (2),

pðxjCbÞPðCbÞ > pðxjCaÞPðCaÞ ð9Þ

and therefore for such a sample, the classifier

should have

qðxjCbÞP ðCbÞ > qðxjCaÞP ðCaÞ: ð10Þ
However, this contradicts Eq. (8) for samples that

have different actual and Bayes class memberships.

To avoid such a problem, one might suggest that

the classifier satisfy Eq. (3) instead of Eq. (8), but

this is not possible since the Bayes class member-

ship for the training set is typically unknown.
The problem with Eq. (8) occurs because the

proposed approach will not only reduce the clas-

sifier error but also the Bayes error. As a result, the

generalization accuracy of the classifier can thus be

degraded. Such a phenomenon is very similar to

the overfitting problem encountered with neural
networks. To resolve this difficulty, the early

stopping method, which is often used in neural

network training, is employed (Haykin, 1999). To

apply the early stopping method, samples are first

divided into training and validation sets. The

classifier is then designed by minimizing the clas-

sification error associated with the training set. To

prevent overfitting, the classification error associ-
ated with the validation set is also monitored. The

training process is terminated when the classifica-

tion error of the validation set fails to improve for

a prespecified number of iterations.
3.3. Approach with early stopping technique

With the early stopping technique, the proposed
approach can be summarized as follows:

(1) Divide samples with known actual class mem-

bership into training and validation sets.

(2) Let wi;1 be the centroid of the training samples

of the ith class. This generates an initial proto-

type for each class. As such, each class gener-

ates a single cluster in the beginning of the
training process.

(3) Compute Ei;j, i.e., the number of incorrectly

classified samples associated with the jth clus-

ter of class i.
(4) Find the largest Ei;j and the corresponding

cluster center w�.

(5) Apply the LBG method to divide the samples

that were assigned to w� in the clustering pro-
cess into two sub-clusters.

(6) Increase the number of prototypes by one by

replacing w� with the two cluster centers gener-

ated in the previous step.

(7) With the updated prototype set, compute the

classification error for the validation set.

(8) Terminate the prototype set building process if

the classification error for the validation set
fails to improve for a prespecified number of
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iterations. Otherwise, this process continues

from (3).

Finally, the early stopping method provides an

answer for the third problem in that it provides a
mechanism to automatically terminate the incre-

mental prototype set building process.
Table 1

Summary of the classification result for the Wisconsin breast

cancer problem (best Statlog project validation accuracy:

97.2%)

Method Accuracy (%) Number of prototypes

UNN 95.7 629

CNN 96.3 27.3

VQ-NN 96.3 2

AVQ-NN 97.7 4.7
4. Experimental results

Experimental results given by Xie et al. (1993)

have shown that the VQ-NN classifier outper-
forms several traditional NN classifier design

methods, including the CNN (condensed nearest

neighbor; Hart, 1968), the RNN (reduced nearest

neighbor; Gates, 1972) and the ENN (edited

nearest neighbor; Devijver and Kittler, 1980) in

terms of both the prototype reduction rate and the

classification accuracy. Therefore, one of the goals

here is to compare the proposed approach with the
VQ-NN in solving several benchmark problems.

Due to the adaptive nature of its prototype gener-

ation, the proposed method will be referred to as

the AVQ-NN method hereafter.

With the unedited training set, the uncondensed

nearest neighbor (UNN) rule and the well-known

CNN method were also implemented. In testing

these methods, a 10-fold cross-validation process
was used. In the results below, the average number

of prototypes and the average validation accuracy

are reported, where the validation accuracy is de-

fined as the percentage of the correctly classified

samples in the validation set.

4.1. Smaller data sets

This subsection considers test data sets with a

relatively small number of samples:

(1) Wisconsin breast cancer data: This database

was obtained from the UCI repository of Ma-

chine Learning Databases and Domain Theo-

ries. It includes 699 samples, each of which

has nine features of a breast tumor. The output
indicates whether the tumor was benign or

malignant. After testing 34 classification meth-

ods, the best 10-fold cross-validation classifica-
tion accuracy obtained by the Statlog project

(Hichie et al., 1994) is 97.2% (www.phys.uni.

torun.pl/kmk/projects/datasets.html).

(2) Australian credit card data: The goal of this

data set, used by the Statlog project, was to as-
sess applications for credit cards based on 14

attributes and involves 690 samples in total.

After solving this problem with 27 classifica-

tion methods, the best 10-fold cross-validation

classification accuracy obtained by the Statlog

project is 86.9% (www.phys.uni.torun.pl/kmk/

projects/datasets-stat.html).

(3) Diabetic data: Based on eight features, the
objective of this problem is to determine

whether a person is diabetic. This problem in-

cludes 768 examples. The data set was also ob-

tained from theUCI repository. After testing 25

classification methods, the best 10-fold cross-

validation classification accuracy obtained by

the Statlog project is 77.7% (www.phys.uni.

torun.pl/kmk/projects/datasets. html).

In developing the VQ-NN classifier for each of

these three problems, the number of prototypes

was increased by a factor of 2 gradually from 2 to

128. The number of prototypes yielding the

smallest validation error was then selected. In

addition, in solving these three problems the early

stopping technique terminated the AVQ-NN
method when the classification error for a valida-

tion set failed to improve for 10 iterations.

The classification results for the three problems

are summarized in Tables 1–3, respectively, and

demonstrate the accuracy of the proposed AVQ-

NN approach. The VQ-NN method has the sec-

ond lowest classification error, followed by the

CNN and finally the UNN methods. For all three

http://www.phys.uni.torun.pl/kmk/projects/datasets.html
http://www.phys.uni.torun.pl/kmk/projects/datasets.html
http://www.phys.uni.torun.pl/kmk/projects/datasets-stat.html
http://www.phys.uni.torun.pl/kmk/projects/datasets-stat.html
http://www.phys.uni.torun.pl/kmk/projects/datasets.html
http://www.phys.uni.torun.pl/kmk/projects/datasets.html


Table 4

Summary of the classification result for the Phoneme problem

Method Accuracy (%) Number of prototypes

UNN 90.5 4864

CNN 86.1 545

VQ-NN 81.0 128

AVQ-NN 85.4 199

Table 2

Summary of the classification result for the Australian credit

card problem (best Statlog project validation accuracy: 86.9%)

Method Accuracy (%) Number of prototypes

UNN 79.4 621

CNN 83.4 72.5

VQ-NN 86.4 4

AVQ-NN 88.8 3.7

Table 3

Summary of the classification result for the diabetes problem

(best Statlog project validation accuracy: 77.7%)

Method Accuracy (%) Number of prototypes

UNN 69.3 691

CNN 72.7 114.9

VQ-NN 73.8 4

AVQ-NN 78.0 6.4
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problems, the AVQ-NN method yields lower
classification errors than the best results obtained

by the Statlog project, which comprehensively

tested many different classification methods,

including a back-propagation (BP) method, a

learning vector quantization (LVQ) classifier, a

support vector machine (SVM) method as well as

a radial basis function (RBF) neural classifier.

The results shown in the tables also demon-
strate the potential of the VQ technique in finding

an efficient set of prototypes to represent training

samples. Specifically, the prototype numbers

associated with the two VQ-based methods are

significantly smaller than those required by the

CNN and UNN methods. The VQ-NN method

has the least number of prototypes in two of the

three tested problems. However, under the limi-
tation of at most 128 prototypes, the VQ-NN

method cannot find a better classification result by

using more prototypes for these problems. For the

diabetes problem, with 8, 16, and 32 prototypes,

the classification accuracy of the VQ-NN method

is 72.0%, 70.0% and 68.5%, respectively. In con-

trast to the inflexible prototype expansion proce-

dure of the VQ-NN, the AVQ-NN method
increases the prototypes one-at-a-time, and is

therefore able to find better classification results

with a few more prototypes.
4.2. Larger data sets

In this subsection, two examples with a rela-

tively large number of training samples are con-

sidered.

(4) Phoneme data: This data set is adapted from

the ELENA project. (The databases used by

this project and a technical report describing

them are available via anonymous ftp at ftp.

dice.ucl.ac.be in the directory pub/neural-nets/

ELENA/databases.) The aim of this problem

is to distinguish between nasal (3818 samples)
and oral (1586 samples) vowels. Each sample

is represented as a five-dimensional vector.

(5) Kr-vs-Kp data: This chess endgame database

was also obtained from the UCI repository.

This problem consists of two classes, which

contain 1669 and 1527 samples, respectively.

The dimension of the feature vector is 36.

Given the larger size of the training sets, the

maximum allowable number of prototypes for the

VQ-NN method was set at 1024. As shown in

Table 4, unlike the previous three examples, the

two VQ based methods fail to provide better

classification accuracy than the UNN and CNN

methods in dealing with the Phoneme problem.

The question then is why the proposed approach
fails to outperform the UNN and the CNN

methods in this problem.

The goal of a VQ method is to represent a large

number of samples with a relatively small number

of prototypes. This goal is easy to achieve if the

samples are concentrated in a few clusters. How-

ever, if the samples are distributed in a large

number of disjointed regions far apart from one
another, then the number of prototypes required

to achieve a sufficiently small level of distortion



Table 5

Summary of the classification result for the Kr-vs-Kp problem

Method Accuracy (%) Number of prototypes

UNN 90.3 2876

CNN 87.2 282

VQ-NN 94.0 256

AVQ-NN 94.6 157
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may become very large. The two VQ-based

methods fail to achieve better classification accu-

racy than the UNN method in this problem since

the vowels of the training set were taken from 1809

isolated syllables. As a result, in the five-dimen-

sional feature, it is very likely that these 5404

samples of the Phoneme data set are distributed in
a large number of disjointed clusters. Nevertheless,

compared with the VQ-NN method, the proposed

approach still provides better classification accu-

racy and its prototype requirement is also much

less than those of the UNN and CNN methods.

Finally, the results for the Kr-vs-Kp problem,

whose training set is of comparable size as that of

the Phoneme problem, are summarized in Table 5.
In similarity to the results shown in the first three

tables, the two VQ-based methods again provide

better classification accuracy with smaller number

of prototypes. In addition, the AVQ-NN method

outperforms the VQ-NN method since it reduces

the number of prototypes by more than 38% and

provides slightly better classification accuracy.
5. Conclusions

Based on the concept of vector quantization,

this paper proposes a prototype set building

technique for the design of a NN classifier. In

addition to the application of the VQ technique, a

distinct feature of the proposed approach is that
the approach expands the prototype set on a one-

at-a-time basis with an error-guided procedure.
The effectiveness of the method was tested using

five data sets. The results shows that the proposed

approach can achieve high classification accuracy

with a relatively small number of prototypes. To

fully investigate the potential of the method, more

comprehensive experiments can be performed. In
addition, the approach can be compared with

other nonparametric classifiers such as neural

networks. Another possible future direction is to

investigate the sensitivity of the proposed method

to the training set size.
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